Search results for "dirichlet boundary value problem"

showing 3 items of 3 documents

Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator

2017

We prove the existence of weak solutions to the Dirichlet boundary value problem for equations involving the $p(x)$-Laplacian-like operator in the principal part, with reaction term satisfying a sub-critical growth condition. We establish the existence of at least one nontrivial weak solution and three weak solutions, by using variational methods and critical point theory.

Pure mathematicsApplied MathematicsOperator (physics)010102 general mathematicsdirichlet boundary value problem01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicaP(x)-Laplacian-like operatorQA1-939symbolsvariable exponent sobolev spaceBoundary value problem0101 mathematics$p(x)$-laplacian-like operatorLaplace operatorMathematicsMathematicsElectronic Journal of Qualitative Theory of Differential Equations
researchProduct

Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis

2021

We give sufficient conditions for the existence of weak solutions to quasilinear elliptic Dirichlet problem driven by the A-Laplace operator in a bounded domain Ω. The techniques, based on a variant of the symmetric mountain pass theorem, exploit variational methods. We also provide information about the asymptotic behavior of the solutions as a suitable parameter goes to 0 + . In this case, we point out the existence of a blow-up phenomenon. The analysis developed in this paper extends and complements various qualitative and asymptotic properties for some cases described by homogeneous differential operators.

Asymptotic analysisLaplace transformGeneral Mathematics010102 general mathematicsNonparametric statistics01 natural sciencesDirichlet boundary value problem010101 applied mathematicsasymptotic analysisA-Laplace operatorOrlicz-Sobolev spaceSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsParametric statisticsMathematicsAsymptotic Analysis
researchProduct

A model of capillary phenomena in RN with subcritical growth

2020

This paper deals with the nonlinear Dirichlet problem of capillary phenomena involving an equation driven by the p-Laplacian-like di¤erential operator in RN. We prove the existence of at least one nontrivial nonnegative weak solution, when the reaction term satisfies a sub-critical growth condition and the potential term has certain regularities. We apply the energy functional method and weaker compactness conditions.

Capillary phenomenaDirichlet boundary value problemSettore MAT/05 - Analisi MatematicaCapillary actionGeneral MathematicsSub criticalMechanicsSobolev spaceP-Laplacian-like operatorMathematicsRendiconti Lincei - Matematica e Applicazioni
researchProduct